Iron Oxide Nanocrystals for Magnetic Hyperthermia Applications

نویسندگان

  • Leisha M. Armijo
  • Yekaterina I. Brandt
  • Dimple Mathew
  • Surabhi Yadav
  • Salomon Maestas
  • Antonio C. Rivera
  • Nathaniel C. Cook
  • Nathan J. Withers
  • Gennady A. Smolyakov
  • Natalie Adolphi
  • Todd C. Monson
  • Dale L. Huber
  • Hugh D. C. Smyth
  • Marek Osiński
چکیده

Magnetic nanocrystals have been investigated extensively in the past several years for several potential applications, such as information technology, MRI contrast agents, and for drug conjugation and delivery. A specific property of interest in biomedicine is magnetic hyperthermia-an increase in temperature resulting from the thermal energy released by magnetic nanocrystals in an external alternating magnetic field. Iron oxide nanocrystals of various sizes and morphologies were synthesized and tested for specific losses (heating power) using frequencies of 111.1 kHz and 629.2 kHz, and corresponding magnetic field strengths of 9 and 25 mT. Polymorphous nanocrystals as well as spherical nanocrystals and nanowires in paramagnetic to ferromagnetic size range exhibited good heating power. A remarkable 30 °C temperature increase was observed in a nanowire sample at 111 kHz and magnetic field of 25 mT (19.6 kA/m), which is very close to the typical values of 100 kHz and 20 mT used in medical treatments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators.

Colloidal nanocrystal assemblies (nanoclusters), consisting of 13 nm iron oxide nanocrystals, were synthesized in various sizes (45-98 nm), and were investigated as heating mediators for magnetic particle hyperthermia. The colloidal nanocrystal clusters show enhanced heating efficiency in comparison with their constituent primary iron oxide nanocrystals due to collective magnetic features. The ...

متن کامل

Magnetic hyperthermia and MRI relaxometry with dendrimer coated iron oxide nanoparticles

Introduction: Recently, some studies have focused on dendrimer nanopolymers as an MRI contrast agent or a vehicle for gene and drug delivery. Considering the suitable properties of these materials, they are appropriate candidates for coating iron oxide nanoparticles which are applied to magnetic hyperthermia. To the best of our knowledge, the novelty of this study is the inves...

متن کامل

A Review of Recent Advances in Iron Oxide Nanoparticles as a Magnetic Agent in Cancer Diagnosis and Treatment

Aims In recent years, iron oxide nanoparticles have shown incredible possibilities in biomedical applications due to their non-toxic function in biological systems. Furthermore, these nanoparticles have multifunctional applications, such as antibacterial, antifungal, and anticancer effects in medicine due to their magnetic properties.  Methods & Materials In this article, 49 articles related t...

متن کامل

Synergistic effects of Radiofrequency Hyperthermia temperature rate with magnetic Graphene oxide nanoparticles drug targeting on CT26 colon cancer cell line

Introduction: Graphene oxide (GO) sheets are carbon-networking nanomaterials offering excellent potential for drug delivery platforms due to hydrophobic interactions and high drug-loading efficiency. Superparamagnetic iron oxide nanoparticles can be used in certain applications such as cell labeling, drug delivery, targeting, magnetic resonance imaging and hyperthermia. Due t...

متن کامل

Optimization of Iron Oxide Nanoparticle Preparation for Biomedical Applications by Using Box-Behenken Design

Magnetic nanoparticles can bind to different drug delivery systems and can be used for drug targeting to a specific organ by using an external magnetic field as well as used in hyperthermia by heating in alternating magnetic fields. The characteristics of iron oxide nanoparticles are significantly affected by particle size, shape and zeta potential, among which the particle size plays the most ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012